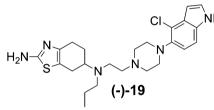
Journal of Medicinal Chemistry


Addition/Correction

Correction to Structure–Activity Relationship Study of N^6 -(2-(4-(1*H*-Indol-5-yl)piperazin-1-yl)ethyl)- N^6 -propyl-4,5,6,7-tetrahydrobenzo[*d*]thiazole-2,6-diamine Analogues: Development of Highly Selective D3 Dopamine Receptor Agonists along with a Highly Potent D2/D3 Agonist and Their Pharmacological Characterization

Mark Johnson, Tamara Antonio, Maarten E. A. Reith, and Aloke K. Dutta*

Journal of Medicinal Chemistry 2012, 55, 5826–5840. DOI: 10.1021/jm300268s

Page 5826. In the abstract, the structure of (-)-19 should include a chlorine atom at the 4-position of the indole ring. The correct structure is shown below:

Page 5828. In Scheme 2, the following structures should include a chlorine atom at the 4-position of the indole ring: 17, (\pm) -18, (-)-18, (+)-18, (\pm) -19, (-)-19, (+)-19, 20, and 21. The correct Scheme 2 is shown in this Addition and Correction.

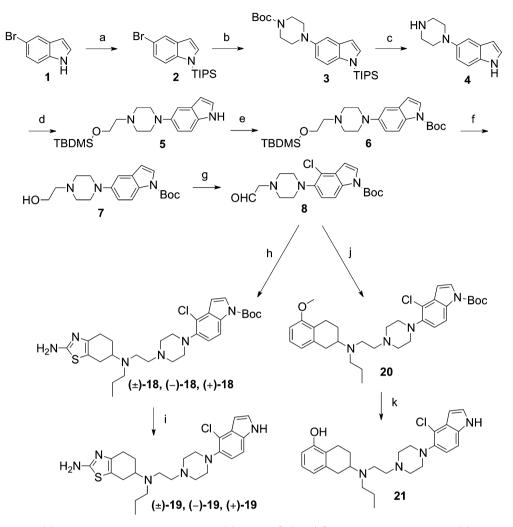
Supporting Information. Elemental analysis results and mass spectral data are adjusted for the final compounds, as indicated in the following and in Table 1:

(±)-19, $C_{24}H_{33}ClN_6S\cdot 3CF_3COOH$. Calculated: carbon, 44.11; hydrogen, 4.45; nitrogen, 10.31. Found: carbon, 44.58; hydrogen, 4.93; nitrogen, 10.57. MS m/z: 473.

(-)-19, $C_{24}H_{33}ClN_6S\cdot 3CF_3COOH$. Calculated: carbon, 44.20; hydrogen, 4.45; nitrogen, 10.31. Found: carbon, 44.55; hydrogen, 4.55; nitrogen, 10.54. MS m/z: 473.

(+)-19, $C_{24}H_{33}ClN_6S\cdot 3CF_3COOH$. Calculated: carbon, 44.20; hydrogen, 4.45; nitrogen, 10.31. Found: carbon, 43.86; hydrogen, 4.69; nitrogen, 10.36. MS m/z: 473.

21, $C_{27}H_{35}ClN_4O.3HBr.3H_2O.$ Calculated: carbon, 42.46; hydrogen, 5.81; nitrogen, 7.34.


Found: carbon, 42.44; hydrogen, 5.82; nitrogen, 7.36. **20**, C₃₃H₄₅ClN₄O₃. MS: *m/z*: 581

tions © 2013 American Chemical Society

Published: January 4, 2013

Scheme 2^{*a*}

"Reagents and conditions: (a) triisoproylsilyl chloride, NaH,THF; (b) 4, $PdCl_2[P(o-tol)_3]_2$, NaO-t-Bu, xylenes, reflux; (c) CF₃COOH, CH₂Cl₂; (d) (2-bromoethoxy)-*tert*-butyldimethysilane, K₂CO₃, CH₃CN, reflux; (e) (Boc)₂O, DMAP, THF; (f) *n*-Bu₄NF, THF; (g) (COCl)₂, DMSO Et₃N, CH₂Cl₂, -78 °C to rt; (h) (±)-, (-)-, or (+)-pramipexole, Na(OAc)₃BH, CH₂; (i) CF₃COOH, CH₂Cl₂; (j) 2, Na(OAc)₃BH, CH₂Cl₂; (k) aq HBr (48%), reflux.

Table 1. Empirical Formula of Compounds with Elemental Analysis Data

	calculated			found		
compd	С	Н	N	С	Н	Ν
9b , $C_{28}H_{46}Cl_4N_4O_3$	53.51	7.38	8.91	52.96	7.37	8.34
(\pm) -41, C ₃₂ H ₄₁ F ₉ N ₆ O ₈ S	45.71	4.92	10.00	45.23	4.92	9.50
(\pm) -42, C ₃₃ H ₄₉ F ₉ N ₆ O ₁₁ S	43.61	5.43	9.25	44.02	5.03	8.64
$(+)$ -45, $C_{25}H_{42}Cl_4N_6O_3S$	46.30	6.53	12.96	46.29	6.77	11.80
(\pm) -46, C ₂₅ H ₄₂ Cl ₄ N ₆ O ₃ S	46.30	6.53	12.96	47.16	6.76	12.74
$(+)$ -46, $C_{25}H_{40}Cl_4N_6O_2S$	47.62	6.39	13.33	48.02	6.90	13.05
48 , $C_{29}H_{54}Cl_4N_6O_6S$	46.03	7.19	11.11	46.29	6.77	11.80